
Masha: Sampling-Based Performance Prediction of Big
Data Applications in Resource-Constrained Clusters

Hani Al-Sayeh1 , Bunjamin Memishi2, Marcus Paradies2, Kai-Uwe Sattler1
1TU Ilmenau, Germany

2German Aerospace Center
{hani-bassam.al-sayeh,kus}@tu-ilmenau.de
{bunjamin.memishi,marcus.paradies}@dlr.de

ABSTRACT
Nowadays deployment of data-intensive systems in multi-di-
mensional domains is achieved with insufficient knowledge
regarding the data, application internals, and infrastructure
requirements. In addition, the current performance predic-
tion frameworks focus to predict the performance of data-
intensive applications on mid to large-scale infrastructures,
which does not seem to be always the case. We reproduced
16 applications on a small-scale cluster, and obtained con-
cerning results from a baseline prediction framework. Con-
sequently, we argue that neither the previous design of the
experiments, nor the prediction models are sufficiently ac-
curate at resource-constrained cluster scenarios. Therefore,
we propose Masha, a new, black-box, sampling-based ap-
proach, that is initially lead by a new design of experiments,
without relying on any historical executions. This is fol-
lowed by a new performance prediction model, whose main
idea is that apart from the computation, the data also needs
a first citizen role. Our preliminary results are promising,
by means of being able to characterize complex applications,
having an average prediction accuracy of 83 %, and with a
negligible overhead cost of only 2.42 %. Being framework-
independent, Masha is applicable to any data-intensive dis-
tributed system.

1. INTRODUCTION
The abundant availability and nearly infinite scalability of
compute & storage resources in public and private data cen-
ter cluster infrastructures has spurred a rapid growth of
advanced analytics tasks on massive-scale data sets from
data-intensive sciences. This includes complex, compute-
intensive algorithms, such as deep learning for classification
& object detection tasks in medical [12] and satellite im-
ages [11], pulsar discovery in astronomy [7], and genome
analysis [16]. In contrast to traditional, short-running, de-
scriptive and explorative data analytics tasks, such advanced

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by email-
ing authors. Copyright is held by the owner/author(s). Publication rights
licensed to the DISPA 2020. The workshop on Distributed Infrastructure,
Systems, Programming, and AI (DISPA), August 31, 2020.

analytics tasks are not only data-intensive (i.e., I/O-inten-
sive), but tend to be also computationally expensive and
long-running (up to multiple days to weeks). With the re-
cent advent of powerful, parallel computation frameworks,
such as Apache Spark [21], Dryad [10], and Apache Flink [6],
increasingly such advanced analytics tasks are implemented
as dataflow programs and deployed on large public or private
cloud infrastructures. Caused by the ever-growing diversifi-
cation of available instance types in public cloud infrastruc-
tures with respect to their compute, memory, storage, and
network characteristics, users are confronted with choosing
the right instance configuration for a given application task.

Besides choosing the best-performing (and most economi-
cal) instance types in public cloud infrastructures, answering
what-if questions for initial cluster hardware sizing and pre-
cise prediction of resource consumption of advanced analyt-
ics tasks in resource-limited cloud infrastructures demand
for accurate performance prediction models of such tasks.
Without dispute, execution time prediction for complex ad-
vanced analytics tasks in parallel computation frameworks
is a core building block for addressing the aforementioned
challenges and already received significant attention in the
research community [4, 5, 13, 14, 18, 20].

A common approach is to run the given analytics job on
sample input sets and to use the derived performance mea-
sures to create a job-specific performance model [20]. Be-
sides devising a performance model skeleton, a major chal-
lenge lies in identifying the minimal number of sampling
measurements, which sufficiently capture the applications’
behavior for larger data sets. Our initial study of a popular
existing performance prediction framework (cf. Section 3)
reveals that the proposed techniques cannot easily be trans-
ferred from medium-sized clusters (40-60 machines within
a cluster) to small-sized clusters (less than 20 machines)
and to data-intensive applications from the HiBench big
data benchmarking suite [3, 9]. To that end, we tackle the
challenge of achieving accurate, low-overhead performance
predictions on small-size clusters with less than 20 machines
for a large variety of 16 different long-running data-intensive
applications from HiBench. In order to isolate the develop-
ment of a performance prediction model from the optimal
design of experiments (DoE) methodology, we propose a
DoE oracle, which produces an optimal set of sampling ex-
periments independent of the actual prediction model. Our
devised performance model provides 83 % prediction accu-
racy while achieving a comparable overhead of 2.42 % on
average. In summary, we make the following contributions:

1

• We conduct an extensive performance analysis of 16
different data-intensive applications covering 120 dif-
ferent sampling configurations.

• We devise a DoE oracle methodology, which separates
the optimal DoE design from the prediction model and
allows independent performance comparison between
different performance prediction models.

• We propose an enhanced performance prediction model
and show experimentally using 16 different data-inten-
sive applications that our approach provides on av-
erage 43.5 % higher accuracy for resource-constrained
clusters compared to Ernest while being competitive
with respect to the overhead induced by the additional
training runs.

The remainder of the paper is organized as follows. Sec-
tion 2 gives preliminary background. Section 3 describes the
findings from an analysis of Ernest in resource-constrained
clusters. Section 4 introduces the DoE oracle methodology.
Section 5 introduces our approach. Section 6 shows the eval-
uation results of Masha compared with our baseline (i.e.,
Ernest). In Section 7 we discuss and analyse the limita-
tions of Masha and Ernest, followed by a related work
in Section 8. Finally, Section 9 summarizes the paper and
provides outlook.

2. BACKGROUND
In this section, we briefly explain the main idea behind sam-
pling and its main challenges (cf. Section 2.1). In addition,
we discuss further details about big data analytics in Sec-
tion 2.2.

2.1 Sampling
In complex computer systems such as distributed systems,
it is hard to dive into details of each system component to
construct performance prediction models and consequently
make suitable decisions. In these occasions, sample sys-
tem runs on a smaller problem sizes (e.g., data fractions)
and various system configurations (e.g., number of process-
ing units) can be performed to monitor and analyze system
performance. Before carrying out sample runs, the follow-
ing two main questions will have to be answered: (1) How
many sample points do we need and which are the selected
configurations and data fractions? (2) How to analyze the
sample runs and predict the performance of the actual run?
A design of experiments (DoE) component needs to answer
the first question (cf. Section 4). A performance prediction
model that takes various configurations into consideration
addresses the second question (cf. Section 5).

Challenges. In the following, we list the main challenges
of sampling-based performance prediction:
• Sampling overhead. The time and cost of sample runs

should be relatively small compared with actual sys-
tem runs. This is the main reason why sampling is
not a convenient approach in many cases, where ac-
tual system runs are short-running. However, reducing
sampling costs by limiting the number of experiments
can affect the prediction accuracy of the performance
model.

• Generality. This challenge needs to be addressed dur-
ing the development of the performance prediction mod-
el. It should be comprehensive and cover various work-
loads and system behaviours.

• Prediction accuracy. In order to achieve acceptable
performance accuracy, both, DoE and prediction model
need to be well harmonized. Herein, the main chal-
lenge is that one component cannot be presented or
evaluated individually, since they are tightly coupled.
Therefore, many sampling based approaches present
both components at the same time. To that end, in
case of low prediction accuracy, we cannot easily deter-
mine which component causes the low prediction ac-
curacy, and whether changing one component requires
also changes in the other component.

2.2 Big data analytics
In order to run complex, long-running data flows on large
data volumes, the data is partitioned into smaller chunks
(called blocks), which are then distributed across processing
machines and processed in parallel. Some operations (e.g.,
aggregation and join) require data exchange between ma-
chines (i.e., data shuffling). The collection of operators that
follows each other and does not require shuffling is performed
in a single stage. This means, data shuffling is only done be-
tween different stages. Each stage consists of multiple tasks
that applies the same processing algorithm/s on different
data blocks. The number of tasks in the first stage is deter-
mined by the number of input data blocks distributed over
all machines. Thus, the number of tasks in stages remains
the same, or changes proportionally.

Latency analysis. We discuss some aspects that influence
system latency from multiple perspectives:
• Increasing the input data size increases the number of

data input blocks, thus, increases the number of tasks
per stage. In addition, more tasks are assigned to each
processing machine.

• More tasks in a stage cause additional data shuffling
overhead. For example, if we have 4 tasks per stage
then 4× 4 data block transfer operations are required
to shuffle data blocks between two stages (each has 4
tasks). Increasing the number of tasks to 5 per stage,
it means that 5× 5 data block transfer operations are
required instead.

• Increasing the number of processing machines, it means
that lower amount of tasks are assigned to each pro-
cessing machine.

• Increasing the number of processing machines, it means
an increase of data transfer overhead, while more data
blocks need to be exchanged over network. For exam-
ple, if two machines are allocated, then around 50 %
of data blocks need to be transferred over a network.
66 % of data blocks need to be transferred if three ma-
chines are allocated, and similar.

• Increasing the number of processing machines also in-
creases the total amount of memory that can be used
for execution and caching intermediate results. In prin-
ciple, this reduces the overall processing time.

3. RESOURCE-CONSTRAINED CLUSTERS
Performance prediction of heterogeneous big data applica-
tions already received considerable attention from the re-
search community and lead to the development of effective
performance prediction frameworks, such as Ernest [20]

2

Actual With Ernest DoE With DoE oracle

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

Number of machines

T
im

e
(m

in
)

(a) PageRank

1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

Number of machines

T
im

e
(m

in
)

(b) WordCount

Figure 1: Ernest prediction with different design of experiments strategies.

or CherryPick [5]. They employ sampling-based black-
box prediction approaches, which capture application char-
acteristics on sample runs running in small-sized clusters
(between 1 to 16 machines), and actual runs running in
medium-sized clusters (between 40 and 100 machines).

An analysis of private cluster infrastructures, however,
reveals that most clusters often have far fewer machines,
often less than 20 [20, 5]. We refer to such clusters as
small or resource-constrained clusters, although there is no
clear boundary between small and medium-sized clusters.
We base this on the observation that oftentimes such clus-
ters face resource allocation & scheduling challenges due to
constrained resources (mostly computing power and main
memory capacity) [13]. Our initial analysis of performance
prediction accuracy and overhead measurements using the
state-of-the-art prediction framework Ernest, whose main
target cluster sizes are medium-sized clusters with 40–100
machines, reveals unique challenges for performance predic-
tions on resource-constrained clusters that are not yet well
captured by state-of-the-art approaches.

Impact of DoE strategy. To evaluate the impact of the
DoE strategy, we selected PageRank as an example appli-
cation and computed the prediction accuracy using Ernest
based on 7 sample runs as suggested by the optimal DoE
strategy1 of Ernest on a 12-machine cluster (cf. Section 6
for details). In addition, we use a DoE oracle (cf. Section 4),
which selects the optimal sample runs in a brute-force fash-
ion by running the full factorial of possible sample runs first.
Figure 1a depicts the results of the Ernest performance pre-
diction model in combination with the Ernest DoE strat-
egy () and our DoE oracle (). The DoE oracle does
not only select fewer sample runs (3 versus 7 for the Ernest
DoE), but also enables the Ernest performance prediction
model to achieve a higher average prediction accuracy of
96 % compared to 59 % with the Ernest DoE strategy and
exhibits a 49 % lower sample run overhead.

Impact of performance prediction model. Even if the
DoE strategy produces the optimal sample runs, a perfor-
mance prediction model might still produce a poor execution
time prediction accuracy. To demonstrate this, we selected
WordCount as an example application and used two differ-
ent DoE strategies in conjunction with the performance pre-
diction model of Ernest. Figure 1b shows the predicted ex-
ecution times using the optimal DoE strategy from Ernest
() and our DoE oracle (). The main reason of the low
prediction accuracy of the Ernest performance prediction
model is because it includes the overhead caused by adding

1
https://github.com/amplab/ernest, Accessed: 05-08-2020

new machines (linear and logarithmic), but it does not in-
clude or address the benefits of adding new machines with
respect to the capacity extension of memory for execution
and storage. In Ernest sample experiments are performed
in a small-sized cluster (1–16 machines), whereas the actual
runs take place in larger clusters (45–64 machines). Conse-
quently, during the actual runs, the total memory capacity
is larger and situations with high memory pressure become
less likely.

Based on these initial experiments on a resource-constrained
cluster with 12 machines, we see evidence that the opti-
mal DoE strategy and the execution time prediction model
need to be adapted to optimally cover such small, resource-
constrained clusters. Our focus in the context of this paper
is the generalization of a prediction model towards covering
resource-constrained clusters. Therefore, to ensure that our
approach is generic, we evaluate our approach on all data-
intensive applications of HiBench. To be able to separate
the optimal DoE strategy from the prediction model, we ini-
tially propose a DoE oracle (cf. Section 4) and focus in the
remainder of the paper on the description of the prediction
model.

4. DESIGN OF EXPERIMENTS ORACLE
Performance prediction frameworks for big data applications
typically come in a bundle consisting of a DoE methodology
and a corresponding prediction model. As we have shown in
Section 3, the DoE methodology and the prediction model
can individually but also in conjunction have a dramatic
impact on the overall prediction accuracy. To isolate the
DoE methodology from the prediction model, we use a DoE
oracle and focus in the following on the development of a
generalized prediction model. This enables us to evaluate
different prediction models independent of their respective
optimal sampling strategies. By using the DoE oracle, we
evaluate multiple prediction models, until a final model is
proposed in the paper. Being space limited, we do not eval-
uate and compare between these models in Section 6, rather
we emphasize on the prediction model shown in Section 5.1
(cf. Equation 1).

We carry out sampling experiments by taking into ac-
count two configuration parameters, namely the number of
machines and the data scale (12 and 10 distinct options,
respectively). Our DoE oracle aims at minimizing the over-
head of running the sampling experiments while capturing
sufficient characteristics of the application to ensure a high
prediction accuracy.

Typically, DoE strategies suggest that a static set of ex-
periments should be carried out for all applications. Due

3

020406080100120

20

40

60

Number of experiments

E
rr

o
r

(%
)

Figure 2: Model error of Linear Regression by removing
sample experiments.

to the heterogeneity of advanced analytics applications and
their resource requirements (e.g., I/O-, CPU-, or network-
intensive), these aspects have to be taken into account when
developing an optimal DoE methodology. For example,
to capture the characteristics of data-intensive applications,
running sampling experiments with large data scales on few
machines is beneficial since it stresses and captures memory
limitations (e.g., data spilling to disk) even during sample
runs. Similarly, sample configurations with small data scales
on large clusters allow capturing latency delays induced by
the networking stack. Our DoE oracle relies on the follow-
ing steps:

1. Run the application on the full data scale and all clus-
ter configurations. In total, there are 12 actual runs
of 100 data scale on 1–12 machines.

2. Apply the sampling phase by using a full factorial de-
sign of experiments. In total, there are 120 sample
runs of 1–10 data scales on 1–12 machines.

3. In iterative manner, remove sample experiments one
by one until 3 experiments are reached. At every iter-
ation, one sample experiment should be removed. This
is done by having an internal iteration over remaining
experiments. In each internal iteration, the experi-
ment is removed from the list and the model is trained
using the remaining experiments, relying on the exe-
cution time model (cf. Section 5.1). The point whose
removal causes the highest model score, relying on the
score function (cf. Section 5.2), is removed. The out-
come of each iteration is a list of sampling experiments
and the prediction accuracy value. Three experiments
are selected to be the lower bound of experiments be-
cause the features of the performance prediction model
(cf. Section 5.1) comprise non-linear functions. There-
fore, two experiments are expected to be very few.

4. Select the best sampling experiments list containing
at most 10 experiments and with the highest efficiency
score (model accuracy (cf. Section 5.1) to the sampling
cost (cf. Section 5.3) ratio).

We take Linear Regression (lir) as an illustration applica-
tion example. Initially, we run lir on the full data scale on
12 different configurations (1–12 machines). Next, we run
120 greedy (full factorial) sample experiments (data scales
1–10 on 1–12 machines). In a subsequent step, we remove
the collected data points again one by one. Figure 2 il-
lustrates the impact of removing data points (i.e., sample
experiments) on the error (cf. Section 5.2) of the perfor-
mance prediction model (cf. Section 5.1). We observe that
the process of removing sample experiments can be divided

Table 1: Model accuracy versus sampling overhead ratio in
Linear Regression.

#Experiments Accuracy Overhead Accuracy:Overhead

3 49.8 135.2 0.37
4 86.1 171.6 0.5
5 89.2 225.1 0.4
6 86.8 273 0.32
7 86.6 366.9 0.24
8 88.2 386.3 0.23
9 89.2 412.9 0.22

10 89.8 455.6 0.2

into three phases:

Phase 1 (Removal of outliers) Initially, the model accu-
racy improves when we remove the first batch of
sample experiments. Most of the removed exper-
iments are short-running and can cause a large
execution time variance, which could affect the
overall model accuracy.

Phase 2 (Removal of unnecessary experiments) In
this phase, the model accuracy remains stable while
reducing the number of sample experiments limits
the sampling overhead.

Phase 3 (Removal of useful experiments) In this phase,
the model accuracy is directly affected by the re-
moval of sample experiments. Thus, a trade-off
has to be made between high model accuracy and
low sampling overhead. In our experimental anal-
ysis, this behavior becomes noticeable when less
than 7 sample experiments are selected.

Table 1 shows how the optimal sampling configuration with
4 experiments was selected for lir based on the model ac-
curacy / sampling overhead ratio. The model accuracy
and sampling overhead are calculated using Equation 2 and
Equation 4, respectively. As such, the DoE oracle facilitates
the separation of the DoE and the performance prediction
model. In the remainder of the paper, our focus is on the
performance prediction model and we leave the development
of a more general DoE for future work.

5. APPROACH
To predict the execution time of an application on various
cluster configurations (i.e., the number of machines), we run
sample experiments by tuning two configuration parameters,
namely the number of machines and the data scale. We refer
to the data scale by a percentage of the full data input. For
example, data scale 10 refers to 10 % of the full data scale.
While running sample experiments, we tune the data scale
parameter within a range of 1–10. We train the execution
time model with the selected experiments and calculate the
model coefficients. Finally, the model can predict the exe-
cution time of the application on the full data scale and for
different cluster configurations (number of machines).

5.1 Execution time model
The execution time of an application consists of the following
main parts, accordingly to the issues specified in Section 2.2:

• Serial part. A constant overhead (e.g., startup delays
caused by cluster resource allocation and query plan-
ning).

4

• Parallel part. Adding more machines reduces the exe-
cution time of the application for two reasons: (1) The
number of tasks per machine s/m is lower, where s is
the scale, m is the number of machines, and (2) the
total amount of memory allocated for the application
will be higher, and thus, less cached intermediate re-
sult data partitions will be evicted. In addition, more
amount of memory will be for data processing, which
means less data management overhead (e.g., gc over-
head). Experimentally, we could verify that the term
(s× log(s))/m represents this behavior well.

• Overhead. Adding more machines to the cluster lin-
early increases the data transfer overhead during shuf-
fling. In addition, more data results in more data
blocks being written to a distributed file system, which
subsequently results in more tasks per stage. That
means, more tasks output shuffling data blocks be-
tween stages. Therefore, the complexity of shuffle cost
is O(n2), where n is the data scale.

Following the discussion of the main parts of an application,
our proposed execution time prediction model is as follows:

R = θ0 ×
s

m
+ θ1 × s2 + θ2 ×m+ θ3 ×

s× log(s)

m
(1)

where R is the execution time, s is the scale, and m is the
number of machines. In addition, the model coefficients θ0,
θ1, θ2, and θ3 capture application-specific characteristics.
The execution time model does not have a fixed delay that
represents the serial computation. We omit this part since
we assume the input data to already reside in a distributed
file system, which allows applications to directly read data
blocks after start up. In practice, however, there is a con-
stant overhead during the startup phase, which can be at-
tributed to the resource manager negotiating the resource
allocation. In our experiments, this constant overhead was
up to 40 seconds, which are negligible for long-running ap-
plications running for multiple hours.

To train the model, we use the curve fit solver [1] with
enforced positive bounds, which avoids getting negative co-
efficients. This approach achieves the same results as the
non-negative least squares (NNLS) solver [2], but provides
more flexibility for testing non-linear, advanced models.

5.2 Score function
To evaluate our execution time prediction model, we com-
pare the actual and the predicted execution time for each
configuration individually. We define a score function, which
defines for every cluster configuration the error value E:

E =

NC∑
c=1

ABS(AR(c)− PR(c))× 100

AR(c)

NC
(2)

where NC is the number of cluster configurations (number
of machines), AR is the actual execution time, and PR is
the predicted execution time. The final score is the average
of all error values E for every cluster configuration.

In modifying the cluster, configurations influence the ap-
plication execution time significantly. We selected the cur-
rent scoring function instead of a mean square error func-
tion, because the latter one significantly hides the miss pre-
dictions. This is easily apparent in cluster configurations
(e.g., with 12 machines) when the application execution time

is relatively short. For example, actual runs in different con-
figurations took 1 hour on one machine and 10 minutes on
12 machines. If the predicted values were 1 hour on a single
machine and 20 minutes on 12 machines, our proposed score
function returns an error value of 25 %.

5.3 Cost function
To define the cost of a sample experiment Ce, we use the
total cluster occupation time, which we calculate as follows:

Ce = me × re (3)

where me is the number of machines and re is the execution
time of an experiment e. The cost of all sampling exper-
iments CS is the sum of the total occupation time of all
experiments (i.e., the machine minutes):

CS =

n∑
e=1

Ce (4)

where n is the number of experiments and C is the cost of
a single experiment. In order to quantify the cost of the
entire set of sampling experiments, we compare the cost of
all experiments with the cost of all actual runs. That is the
sum of all actual total occupancy time runs, with all different
configurations on the full data scale,

∑NC
c=1AR(c)×c, where

NC is the number of cluster configurations and AR(c) is
the actual execution time of the application, running on c
number of machines.

6. EXPERIMENTAL EVALUATION
We evaluate Masha by means of its prediction accuracy and
sampling overhead. In addition to comparing with the ac-
tual execution times, we also compare Masha with Ernest.
Furthermore, for the comparisons, Ernest is deployed in
two modes, Ernest with its proper DoE strategy and with
DoE oracle (cf. Section 4). Afterward, we identify these
two Ernest modes as Ernest and Ernest DoE oracle,
respectively.

For evaluation, we use the full set of HiBench (i.e., 16
different applications) representing 3 different application
categories (ML, Graph, Micro) with diverse job topology
characteristics (cf. Table 2). Intentionally we exclude Hi-
Bench SQL applications, because they only consist from a
set of mere query operations. All model accuracy and cost
results presented in this section are derived from Equation 2
and Equation 4, respectively.

We ran all experiments on a private 12-node Apache Spark
cluster, which consists of the following node specifications:
Intel Core i5 CPU running at 4x 2.90 GHz, 16 GB DDR3
RAM, 1 TB disk, and 1 GBit/s LAN. The cluster runs
Hadoop 2.7, Spark 2.4.0, Java 8u102, and Apache Yarn [19]
on top of HDFS [17].

6.1 Zoom-out
In this section we present an overall prediction accuracy
evaluation of Masha with respect to the actual values and
its baseline, Ernest and Ernest DoE oracle over the entire
set of the applications (cf. Figure 3a). In 75 % of the appli-
cations, Masha shows a prediction accuracy of more than
80 %. Its overall average prediction accuracy is 83 %, and
on average it outperforms Ernest by 43.5 %, and Ernest
DoE oracle by 18.5 %. We observe the smallest difference of
prediction accuracy between Masha and Ernest for SVD

5

Table 2: Overview of evaluated HiBench applications.

Application Type Topology Model Coefficients Duration Data

Jobs # Stages # Tasks θ0 θ1 θ2 θ3

Single
machine

(hrs)
(GB)

Alternating Least Squares (als) ML 53 101 29103 13.68 0.00 30.20 11.60 5.89 13.39
Gradient Boosting Trees (gbt) ML 712 1382 408620 27.43 1.16 32.10 37.80 12.45 0.61
Kmeans (km) ML 14 20 6000 0.00 0.00 0.00 68.96 7.66 112.22
Latent Dirichlet Allocation (lda) ML 27 38 2557 18.37 0.00 32.12 13.84 1.92 1.9
Linear Regression (lir) ML 5 7 28777 287.31 1.53 9.18 0.00 10.09 894.41
Logistics Regression (lor) ML 44 83 13439 0.00 0.00 44.63 31.57 7.97 37.21
NWeight (nw) Graph 1 9 4500 0.00 0.05 5.00 6.52 2.82 1.37
PageRank (pr) Graph 1 6 1788 27.67 0.00 5.49 21.65 3.13 18.56
Principal Components Analysis (pca) ML 209 411 64437 208.63 0.00 348.02 0.00 5.44 2.24
Random Forest Classifier (rfc) ML 9 14 46489 851.82 0.00 103.92 0.00 22.67 223.52
ScalaSort (ss) Micro 1 2 2400 0.00 0.14 7.00 17.10 2.34 153.98
Singular Value Decomposition (svd) ML 2 3 893 216.39 0.00 72.29 0.00 5.84 53.68
Sparse Naive Bayes (snb) ML 9 11 56320 508.40 0.00 0.00 62.64 21.09 350.77
Support Vector Machine (svm) ML 107 209 285804 0.00 0.00 3.89 289.71 43.15 167.63
TeraSort (ts) Micro 2 3 5760 103.61 0.45 2.07 0.00 4.90 240
WordCount (wc) Micro 1 2 9600 69.07 0.20 3.78 0.00 2.74 615.92

Masha Ernest Ernest DoE oracle

als gbt km lda lir lor nw pr pca rfc ss svd snb svm ts wc
0

50

100

A
cc

u
ra

cy
(%

)

(a) Average prediction accuracy

als gbt km lda lir lor nw pr pca rfc ss svd snb svm ts wc
0
5

10
15
20

O
v
er

h
ea

d
(%

)

(b) Overhead measurements

Figure 3: Average prediction accuracy & overhead measurements on the entire set of applications.

(18 %), whereas the highest difference of prediction accu-
racy is for GBT with 83.3 %. In comparison to Masha and
Ernest DoE oracle, we observe the smallest difference of
prediction accuracy for RFC (0.3 %), whereas the highest
difference of prediction accuracy is for GBT with 52.4 %.

Statistically, for 37.5 % of the evaluated applications, Masha
needs 5 sampling points to obtain the best prediction ac-
curacy. For 87.5 % of the applications, it needs between
3–5 sampling points, and for the entire set of applications
(i.e., 100 %), it needs between 3–6 sampling points. In other
words, this shows that Masha reaches its prediction accu-
racy with a reasonable amount of sampling points, consid-
ering long-running applications.

6.2 Zoom-in
In this section, we select KMeans as an exemplary applica-
tion to show a more detailed analysis. As can be seen in
Figure 4, KMeans is by no means the application in which
we observed the best prediction accuracy of Masha.

In KMeans, on a single machine, the prediction accuracy
of Masha is around 85 % and the prediction accuracy of

3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
11
12

Number of experiments

N
u
m
b
e
r
o
f
m
a
ch

in
e
s

−0.5 0 0.5

(a) Masha

3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
11
12

Number of experiments

−0.5 0 0.5

(b) Ernest

Figure 4: Zoom-in analysis of the KMeans application.

Ernest and Ernest DoE oracle is 16 % and 62.5 %, re-
spectively. In this case, the improvement of Masha over
Ernest and Ernest DoE oracle is 68.6 % and 22 %, respec-
tively. As the number of machines increases, Masha reaches
a prediction accuracy of 96.7 % (on 9 machines), whereas the
prediction accuracy of Ernest reaches 16.4 % (on 7 ma-

6

chines), and Ernest DoE oracle reaches 63.4 % (again, on
7 machines) at their best case. The worst prediction accu-
racy by Masha is 83 % on 7 machines. The worst prediction
accuracy shown by Ernest is 13.5 % on 12 machines. The
worst prediction accuracy shown by Ernest DoE oracle is
52 %, again on 12 machines. The smallest difference pre-
diction accuracy between Masha and Ernest and Ernest
DoE oracle is observed on 7 machines, where Masha shows
66.7 % and 19.7 % improvement over Ernest and Ernest
DoE oracle, respectively. The biggest difference prediction
accuracy between Masha and Ernest and Ernest DoE or-
acle is observed on 12 machines, where Masha shows 82 %
and 43.8 % improvement over Ernest and Ernest DoE or-
acle, respectively. Overall, the average prediction accuracy
of Masha is 91 %, compared to 15 % and 58.8 % average
prediction accuracy for Ernest and Ernest DoE oracle,
respectively. This means, on average, Masha shows 75.8 %
and 32 % improvement over Ernest and Ernest DoE or-
acle. It is not difficult to notice that, DoE oracle also im-
proves Ernest prediction accuracy with 43.6 %. Further
details to this later improvement (not just for KMeans, but
also for additional applications) will follow in Section 7.2.

As the prediction accuracy of Masha mostly overesti-
mates the actual running values, Ernest’s prediction ac-
curacy is negative, by underestimating the actual running
values in each number of machines. Furthermore, whereas
Masha shows mixed and inclined towards overestimating
the actual running values, Ernest, in all the experiments,
independently to the number of samplings and machines,
shows a negative prediction accuracy, by means of underes-
timating the actual running values (cf. Figure 4). The main
Ernest execution time model, did not address the memory
limitation behavior, alike we did in Equation 1. Therefore,
Ernest always underestimates the actual running values.
In fact, this is also the reason why in Figure 4b we represent
only Ernest, because both, Ernest and Ernest DoE or-
acle are oriented towards the very same inclination, that of
underestimating the actual running values.

6.3 Overhead measurements
In Figure 3b we show the overhead measurements of Masha
in comparison to Ernest and Ernest DoE oracle. The av-
erage overhead of Masha is 2.42 %, whereas for Ernest is
2.44 % and for Ernest DoE oracle is 1.3 %. This indicates
that Masha improves the prediction accuracy, by means of
having a similar overhead compared to Ernest. Neverthe-
less, Ernest DoE oracle shows better overhead, even if does
not improve the prediction accuracy as Masha.

The very single application that has shown a high over-
head in Masha is SVD with 18.6 %. For the very same
application, the overhead in Ernest is also high (15.4 %).
For the very same application, again Ernest DoE oracle
shows the smallest overhead, with only 5.2 %. We explain
the reason to this phenomenon in Section 7.1. When exclud-
ing SVD numbers, the average overhead for Masha, Ernest
and Ernest DoE oracle, descends further to 1.34 %, 1.6 %
and 1 %, respectively. Comparing Masha and Ernest, in
GBT we observe the smallest relative overhead (0.006 %),
whereas in SVD we observe the highest relative overhead
(3.16 %). Comparing Masha and Ernest DoE oracle, in
SVM we observe the smallest relative overhead (0.023 %),
whereas again in SVD we observe the highest relative over-
head (13.4 %).

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

Number of machines

A
cc

u
ra

cy
(%

)

Figure 5: Performance prediction of NWeight in details.

1 2 3 4 5 6
0
5

10
15
20

machines

T
im

e
(s

)

(a) ds = 100

1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

machines

(b) ds = 5

Figure 6: Garbage collection overhead per task in NWeight.

7. DISCUSSION
In the following we discuss main findings that were observed
during our experimental results regarding Masha (cf. Sec-
tion 7.1) and Ernest (cf. Section 7.2).

7.1 Masha accuracy and overhead
Herein, we discuss our observations from running perfor-
mance predictions on a large variety of different applications
from HiBench, in particular cases where Masha performs
poorly with respect to prediction accuracy (e.g., low predic-
tion accuracy for applications NWeight and SVM ; cf. Fig-
ure 3a) and sampling overhead (e.g., high overhead for ap-
plication SVD ; cf. Figure 3b).

Low prediction accuracy. For NWeight, the performance
prediction of Masha (and any other black-box, sampling-
based approach) exhibits a low accuracy for running on few
(<5) machines—with lowest accuracy of 34 % when running
on a single machine—and a high accuracy (up to 98 %) for
up to 12 machines (cf. Figure 5). The reason for this behav-
ior is caused by an increased memory pressure when run-
ning the application on the full data scale on only few ma-
chines. With a sampling-based approach (i.e., 1–10 % of the
full data scale), however, potential memory limitations that
would occur during a run on full data scale, cannot be easily
captured or even be predicted on small data scales.

To validate this hypothesis, we collected jvm garbage col-
lection (gc) overheads for the NWeight application and show
the results in Figure 6. A high jvm gc overhead is an in-
dicator for a large number of object creations & evictions
in the jvm heap, which in turn is a result of high (execu-
tion) memory pressure (e.g., used for computing and shuf-
fling). We selected the stage within NWeight, which con-
sumes 50 % of the total application execution time. For a
small data scale of 5 % (cf. Figure 6b), the overhead for gc
remains almost constant, independent of the number of ma-
chines. In contrast, on the full data scale (cf. Figure 6a),
the gc significantly increases when we decrease the number
of machines.

Another potential memory limitation concerns storing in-
termediate results (i.e., data partitions). In sample runs on
small data scales, such cached data partitions often entirely
fit into main memory, effectively eliminating the overhead

7

for reading the data partition from a slower storage medium.
To validate this hypothesis, we analyze a representative, it-
erative stage of the SVM application on four different sam-
ple configurations and present the results in Figure 7. On
the 10 % data scale, 2 machines have sufficient memory ca-
pacity to store all data partitions entirely in memory. In
contrast, on a single machine, 38 % of data partitions were
evicted from memory and had to be recomputed, which in
turn causes a large performance penalty. On the 10 % data
scale, for SVM this results in a dramatic execution time dif-
ference between 112 minutes on 1 machine vs. 4 minutes on
2 machines. In order to include the cache eviction behaviour
during the sample runs, again we evaluated SVM after dou-
ble sizing the input data, and consequently we realized an
improvement of the prediction accuracy (82.3 %).

High sampling overhead. Compared to all other applica-
tions, SVD has with about 20 % the highest overhead. For
SVD, our DoE oracle selects 6 sample experiments (out of
120), where each individual experiment comes with high to-
tal cluster occupation time for running them (2 experiments
on 12 machines, 2 experiments on 11 machines, 1 experi-
ment on 10 machines, and 1 experiment on 9 machines).
Here, our DoE oracle incurs a higher overhead than the
DoE in Ernest, even though the number of selected sample
experiments is lower, but the selected sample experiments
by themselves take more time to run.

A second observation stems from an inspection of the de-
rived model coefficients in SVD (cf. Table 2). From the
model coefficients we can conclude that the overhead part
caused by increasing the number of machines (θ2 = 72.3)
dominates the overhead parts caused by increasing the data
scale (θ1 = 0, and θ3 = 0). In such cases, the sampling
overhead is high compared to the actual runs on the full
data scale due to the missing overhead caused by larger data
scales.

7.2 Ernest versus Ernest DoE oracle
Herein, we discuss our observations in cases where Ernest
exhibits low prediction accuracy due to its DoE strategy
and its prediction model.

In Table 2, we can observe that the main reason of poor
prediction accuracy in Ernest comes mainly from the DoE
component. The average prediction accuracy of Ernest is
40 %, whereas the average prediction accuracy of Ernest
DoE oracle is 65 %. By excluding SVM and NW (cf. Sec-
tion 7.1), it can also be observed that the prediction model
of Ernest performs well in the following 7 applications
(i.e., 50 % of the total number of applications) compared
to Masha: ALS, LDA, PR, PCA, RFC, SVD and SNB.
The average accuracy of Ernest DoE oracle in these ap-
plications is 83.5 %. In the remaining applications, the pre-
diction accuracy of Ernest DoE oracle is much lower than
in Masha. The average accuracy of Ernest DoE oracle for
the remaining applications is 54 %. From this, we can con-
clude that the Ernest prediction model is not sufficiently
general to cover a wider set of applications compared with
the presented Masha performance model (cf. Section 5.1).

Low accuracy caused by DoE. To get more insights
into the low performance of the DoE strategy presented by
Ernest, we observed that in those applications on which
Ernest showed improvements when coupled with our DoE
oracle, the respective applications contain many outliers.
The reason is, most of these applications have short-running

ds=100
1 machine

ds=100
2 machines

ds=10
1 machine

ds=10
2 machines

20
40
60
80

100

P
er

ce
n
ta

g
e

(%
)

In-Memory Out-of-Memory

Figure 7: Details of the iterative stage in SVM.

sample experiments. Even if Ernest can detect these out-
liers by means of using its presented cross-validation evalua-
tion of sample experiments, however, it cannot handle them
in a way that improves the overall prediction accuracy.

Low accuracy caused by prediction model. We ob-
served the 7 applications in which Ernest prediction model
resulted high accuracy. From Table 2, we can notice that
in all these applications θ1 = 0. However, we can observe
that also KM and LOR have θ1 = 0, but have low accuracy.
The reason behind this is that KM and LOR have high θ3
coefficients (68.96 and 31.57, respectively). Whereas θ1 rep-
resents the shuffle cost overhead, θ3 represents the overhead
caused by lack of memory. In other words, both overheads
are not addressed in the Ernest prediction model.

8. RELATED WORK
There has been extensive number of contributions that have
observed, analyzed, and predicted the execution time of
data-intensive applications running on distributed systems.

Starfish [8] introduced a self-tuning framework on top of
Apache Hadoop that applies an analytical approach to an-
alyze MapReduce jobs execution time metrics, by running
them on a data fraction and optimize system performance
by tuning its configuration options. PREDIcT [15] is an ex-
perimental methodology to predict the execution time of a
class of iterative algorithms. Its main idea is to predict the
number of iterations and the execution time of each itera-
tion depending on sample runs. Sidhanta et al. [18] have
proposed OptEx, a model for estimating the job execution
time on Apache Spark, under a given service level objec-
tive deadline with near to optimal cluster configuration cost.
Alipourfard et al. have proposed CherryPick [5], a perfor-
mance prediction model that is able to select near to optimal
configurations, by means of leveraging Bayesian Optimiza-
tion and applying an adaptive sampling approach to reduce
the sampling overhead. Marco et al. [13] model the memory
behavior of Apache Spark jobs based on a mixture of exper-
iments. Based on the extracted models, they present execu-
tion time prediction models and propose a task co-location
strategy to improve the system throughput. Doppio [22] is
an execution time prediction model for Apache Spark jobs,
by means of studying the I/O impact on in-memory clus-
ter computing frameworks. Their observation identified I/O
overhead as a dominant bottleneck in such frameworks. Al-
Sayeh et al. [4] presented a graybox model for predicting the
application execution time on Apache Spark, by considering
different computing resources and selected application pa-
rameters based on prior knowledge of application internals.

Among others, the superiority of Masha lies in the generic
application of its methodology, an intersection of a DoE or-
acle with a sampling-based prediction model, high predic-
tion accuracy in resource-constrained clusters, and a broad
coverage of different applications.

8

9. CONCLUSION & OUTLOOK
Masha is fostered to help application users that need to exe-
cute long-running applications in resource-constrained clus-
ter environments. It does this, by giving another perspective
of experiment design and prediction model, which outper-
forms other state-of-the-art approaches. We do not claim to
have a Swiss knife prediction model, as it was observed in
the discussion section. However, the preliminary results are
promising, and encourage a future work. Initially, we plan
to study the carried out sampling measurements of each ap-
plication and define a general DoE approach. In addition,
while we have the model coefficients of each application,
we can analyze these coefficients to classify data-intensive
applications, analyze their bottlenecks, and further charac-
terize them. Finally, we want to explore Masha on data
infrastructures that go beyond small-scale clusters.

Acknowledgements. We would like to thank the anony-
mous reviewers for their helpful comments and suggestions.
Hani Al-Sayeh was supported by funding from the German
Aerospace Center.

10. REFERENCES
[1] Curve fit Solver.

https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.curve_fit.html.
Accessed: 05-08-2020.

[2] NNLS Solver.
https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.nnls.html. Accessed:
05-08-2020.

[3] The HiBench Suite.
https://github.com/Intel-bigdata/HiBench.
Accessed: 05-08-2020.

[4] H. Al-Sayeh, S. Hagedorn, and K.-U. Sattler. A
gray-box modeling methodology for runtime
prediction of Apache Spark jobs. Distributed and
Parallel Databases, pages 1–21, 2020.

[5] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman,
M. Yu, and M. Zhang. CherryPick: Adaptively
Unearthing the Best Cloud Configurations for Big
Data Analytics. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
17), pages 469–482, Mar. 2017.

[6] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache FlinkTM: Stream
and Batch Processing in a Single Engine. IEEE Data
Eng. Bull., 38(4):28–38, 2015.

[7] T. R. Devine, K. Goseva-Popstojanova, and
M. McLaughlin. Detection of dispersed radio pulses: a
machine learning approach to candidate identification
and classification. Monthly Notices of the Royal
Astronomical Society, 459(2):1519–1532, 2016.

[8] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong,
F. B. Cetin, and S. Babu. Starfish: A Self-tuning
System for Big Data Analytics. In CIDR 2011, Fifth
Biennial Conference on Innovative Data Systems
Research, pages 261–272, 2011.

[9] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang.
The HiBench benchmark suite: Characterization of
the MapReduce-based data analysis. In IEEE 26th
International Conference on Data Engineering
Workshops (ICDEW 2010), pages 41–51.

[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from
sequential building blocks. SIGOPS Oper. Syst. Rev.,
41(3):59–72, Mar. 2007.

[11] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov.
Deep learning classification of land cover and crop
types using remote sensing data. IEEE Geoscience
and Remote Sensing Letters, 14(5):778–782, 2017.

[12] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio,
F. Ciompi, M. Ghafoorian, J. A. Van Der Laak,
B. Van Ginneken, and C. I. Sánchez. A survey on deep
learning in medical image analysis. Medical image
analysis, 42:60–88, 2017.

[13] V. S. Marco, B. Taylor, B. Porter, and Z. Wang.
Improving Spark Application Throughput via Memory
Aware Task Co-location: A Mixture of Experts
Approach. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference,
Middleware’17, pages 95–108, 2017.

[14] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker,
and B.-G. Chun. Making sense of performance in data
analytics frameworks. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
15), pages 293–307, 2015.

[15] A. D. Popescu, A. Balmin, V. Ercegovac, and
A. Ailamaki. PREDIcT: Towards Predicting the
Runtime of Large Scale Iterative Analytics. Proc.
VLDB Endow., 6(14):1678–1689, Sept. 2013.

[16] D. Quang, Y. Chen, and X. Xie. Dann: a deep
learning approach for annotating the pathogenicity of
genetic variants. Bioinformatics, 31(5):761–763, 2015.

[17] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In 2010 IEEE
26th symposium on mass storage systems and
technologies (MSST), pages 1–10. Ieee, 2010.

[18] S. Sidhanta, W. Golab, and S. Mukhopadhyay.
OptEx: A Deadline-Aware Cost Optimization Model
for Spark. In 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pages 193–202, May 2016.

[19] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, et al. Apache hadoop yarn: Yet
another resource negotiator. In Proceedings of the 4th
annual Symposium on Cloud Computing (SoCC 2013),
pages 1–16, 2013.

[20] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and
I. Stoica. Ernest: Efficient Performance Prediction for
Large-Scale Advanced Analytics. In 13th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 363–378, Mar. 2016.

[21] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster Computing
with Working Sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing,
HotCloud’10, pages 10–10. USENIX Association, 2010.

[22] P. Zhou, Z. Ruan, Z. Fang, M. Shand, D. Roazen, and
J. Cong. Doppio: I/O-Aware Performance Analysis,
Modeling and Optimization for In-Memory
Computing Framework. In IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 22–32, 2018.

9

